Quantum-classical correspondence for resonances on vector bundles

Benjamin Küster

joint work with Tobias Weich, arXiv:1710.04625

Séminaire Problèmes Spectraux en Physique Mathématique

Institut Henri Poincaré, 7 January 2019
Outline

1. Introduction to classical resonances
 1.1 Basic questions in scalar case
 1.2 "Trivial" example
 1.3 General situation
 1.4 Vector-valued case
2. Results
 2.1 Band structure
 2.2 Main result
 2.3 Additional result
3. Technical aspects
 3.1 Anisotropic Sobolev spaces
\mathcal{M} compact connected Riemannian manifold, no boundary

configuration space of a point particle
\mathcal{M} compact connected Riemannian manifold, no boundary

configuration space of a point particle

$T^*\mathcal{M} \xrightarrow{\pi} \mathcal{M}$ cotangent bundle, phase space

$T^*\mathcal{M} \supset S^*\mathcal{M}$ cosphere bundle, momentum $= 1$
\mathcal{M} compact connected Riemannian manifold, no boundary

configuration space of a point particle

$T^*\mathcal{M} \xrightarrow{\pi} \mathcal{M}$ cotangent bundle, phase space

$T^*\mathcal{M} \supset S^*\mathcal{M}$ cosphere bundle, momentum $= 1$

$\varphi_t : S^*\mathcal{M} \to S^*\mathcal{M}$ geodesic flow, free motion

$X : C^\infty(S^*\mathcal{M}) \to C^\infty(S^*\mathcal{M})$ generating vector field of φ_t
\(\mathcal{M} \) compact connected Riemannian manifold, no boundary

configuration space of a point particle

\[T^*\mathcal{M} \xrightarrow{\pi} \mathcal{M} \text{ cotangent bundle, } \text{phase space} \]

\[T^*\mathcal{M} \supset S^*\mathcal{M} \text{ cosphere bundle, } \text{momentum } = 1 \]

\[\varphi_t : S^*\mathcal{M} \rightarrow S^*\mathcal{M} \text{ geodesic flow, } \text{free motion} \]

\[X : C^\infty(S^*\mathcal{M}) \rightarrow C^\infty(S^*\mathcal{M}) \text{ generating vector field of } \varphi_t \]

\[\Delta_\mathcal{M} : C^\infty(\mathcal{M}) \rightarrow C^\infty(\mathcal{M}) \text{ Laplace-Beltrami op. (positive)} \]
\(\mathcal{M} \) compact connected Riemannian manifold, no boundary

configuration space of a point particle

\(T^*\mathcal{M} \xrightarrow{\pi} \mathcal{M} \) cotangent bundle, phase space

\(T^*\mathcal{M} \supset S^*\mathcal{M} \) cosphere bundle, momentum = 1

\(\varphi_t : S^*\mathcal{M} \to S^*\mathcal{M} \) geodesic flow, free motion

\(X : C^\infty(S^*\mathcal{M}) \to C^\infty(S^*\mathcal{M}) \) generating vector field of \(\varphi_t \)

\(\Delta_{\mathcal{M}} : C^\infty(\mathcal{M}) \to C^\infty(\mathcal{M}) \) Laplace-Beltrami op. (positive)

correspondence principle for \(X \) and \(\Delta_{\mathcal{M}} \)
How to compare the "classical" operator

\[X : C^\infty(S^*\mathcal{M}) \to C^\infty(S^*\mathcal{M}) \]

with the "quantum operator"

\[\Delta_\mathcal{M} : C^\infty(\mathcal{M}) \to C^\infty(\mathcal{M}) \]
How to compare the "classical" operator

\[X : C^\infty(S^*M) \to C^\infty(S^*M) \]

with the "quantum operator"

\[\Delta_M : C^\infty(M) \to C^\infty(M) \]

Pushforward

\[\pi_* : C^\infty(S^*M) \to C^\infty(M) \quad (\text{fiber integration}) \]
Motivation: “Trivial” example

\[\mathcal{M} := S^1 = \mathbb{R}/(2\pi\mathbb{Z}) = \{ e^{i\phi} : \phi \in \mathbb{R} \} \]
Motivation: “Trivial” example

\[\mathcal{M} := S^1 = \mathbb{R}/(2\pi\mathbb{Z}) = \{ e^{i\phi} : \phi \in \mathbb{R} \} , \quad S^*\mathcal{M} = \mathcal{M}_+ \sqcup \mathcal{M}_- \]

\[\mathcal{M}_+ \quad \mathcal{M} \quad \mathcal{M}_- \]

\[\pi \]

\[\mathcal{M} \]

\[M := S^1 = \mathbb{R}/(2\pi\mathbb{Z}) = \{ e^{i\phi} : \phi \in \mathbb{R} \} , \quad S^*\mathcal{M} = \mathcal{M}_+ \sqcup \mathcal{M}_- \]
Motivation: “Trivial” example

\[\mathcal{M} := S^1 = \mathbb{R}/(2\pi \mathbb{Z}) = \{ e^{i\phi} : \phi \in \mathbb{R} \}, \quad S^* \mathcal{M} = \mathcal{M}_+ \sqcup \mathcal{M}_- \]

\[\begin{array}{ccc}
\mathcal{M}_+ & \circ & \mathcal{M}_- \\
\downarrow \pi & & \downarrow \\
\mathcal{M} & \circ & \mathcal{M}
\end{array} \]

\[C^\infty(S^* \mathcal{M}) = C^\infty(\mathcal{M}_+) \oplus C^\infty(\mathcal{M}_-) \]

\[X = \pm \frac{\partial}{\partial \phi} \text{ on } C^\infty(\mathcal{M}_\pm) \]

\[\Delta \mathcal{M} = -\frac{\partial^2}{\partial \phi^2} \]
Motivation: “Trivial” example

\[\mathcal{M} := S^1 = \mathbb{R}/(2\pi \mathbb{Z}) = \{ e^{i\phi} : \phi \in \mathbb{R} \}, \quad S^* \mathcal{M} = \mathcal{M}_+ \sqcup \mathcal{M}_- \]

\[\mathcal{M}_+ \bigcirc \mathcal{M}_- \bigcirc \mathcal{M} \]

\[\pi \]

\[\{(e^{ik\phi}, e^{il\phi})\}_{k,l \in \mathbb{Z}} \text{ orthogonal basis of } L^2(S^*\mathcal{M}) \]
Motivation: “Trivial” example

\[\mathcal{M} := S^1 = \mathbb{R}/(2\pi \mathbb{Z}) = \{ e^{i\phi} : \phi \in \mathbb{R} \}, \quad S^* \mathcal{M} = \mathcal{M}_+ \sqcup \mathcal{M}_- \]

\[\begin{array}{ccc}
\mathcal{M}_+ & \bigcirc & \bigcirc & \mathcal{M}_- \\
\pi & & & \pi \\
\bigcirc & \bigcirc & \bigcirc & \mathcal{M} \\
\end{array} \]

\[\mathcal{C}^\infty(S^* \mathcal{M}) = \mathcal{C}^\infty(\mathcal{M}_+) \oplus \mathcal{C}^\infty(\mathcal{M}_-) \]

\[X = \pm \frac{\partial}{\partial \phi} \text{ on } \mathcal{C}^\infty(\mathcal{M}_+) \]

\[\Delta_{\mathcal{M}} = -\frac{\partial^2}{\partial \phi^2} \]

\[\{ (e^{ik\phi}, e^{il\phi}) \}_{k,l \in \mathbb{Z}} \text{ orthogonal basis of } L^2(S^* \mathcal{M}) \]

\[X(e^{ik\phi}, e^{-ik\phi}) = ik(e^{ik\phi}, e^{-ik\phi}) \]

\[X(e^{ik\phi}, -e^{-ik\phi}) = ik(e^{ik\phi}, -e^{-ik\phi}) \quad k \in \mathbb{Z} \]
Motivation: "Trivial" example

\[\mathcal{M} := S^1 = \mathbb{R}/(2\pi \mathbb{Z}) = \{ e^{i\phi} : \phi \in \mathbb{R} \}, \quad S^*\mathcal{M} = \mathcal{M}_+ \sqcup \mathcal{M}_- \]

\[\mathcal{M}_+ \quad \bigcirc \quad \bigcirc \quad \mathcal{M}_- \quad \text{C}^\infty(S^*\mathcal{M}) = C^\infty(\mathcal{M}_+) \oplus C^\infty(\mathcal{M}_-) \]

\[\pi \quad \Delta_\mathcal{M} = -\frac{\partial^2}{\partial \phi^2} \]

\[\{ (e^{i k \phi}, e^{i l \phi}) \}_{k,l \in \mathbb{Z}} \text{ orthogonal basis of } L^2(S^*\mathcal{M}) \]

\[X(e^{i k \phi}, e^{-i k \phi}) = i k (e^{i k \phi}, e^{-i k \phi}) \]

\[X(e^{i k \phi}, -e^{-i k \phi}) = i k (e^{i k \phi}, -e^{-i k \phi}) \quad k \in \mathbb{Z} \]

\[\pi_*(e^{i k \phi}, e^{-i k \phi}) = e^{i k \phi} + e^{-i k \phi} = 2 \cos(k \phi) \in \text{Eig}(\Delta_\mathcal{M}, k^2) \]

\[\pi_*(e^{i k \phi}, -e^{-i k \phi}) = e^{i k \phi} - e^{-i k \phi} = 2i \sin(k \phi) \in \text{Eig}(\Delta_\mathcal{M}, k^2) \]
Spectra of Δ_M and X for $M = S^1$

Pushfwd $\pi_* : C^\infty(S^*M) \to C^\infty(M)$ induces isomorphisms

$$\text{Eig}(X, ik) \overset{\pi_*}{\cong} \text{Eig}(\Delta_M, k^2), \quad k \in \mathbb{Z}$$

$$\text{Spectrum}(X) = \{ \bullet \} = i\mathbb{Z}$$

$$\text{Spectrum}(\Delta_M) = \{ \blacksquare \} = \{ k^2 \}_{k \in \mathbb{N}_0}$$
General situation: The Anosov condition

\[\dim \mathcal{M} > 1 \implies X \text{ not elliptic. Require additional condition} \]
General situation: The Anosov condition

\[\dim \mathcal{M} > 1 \implies X \text{ not elliptic. Require additional condition} \]

The geodesic flow \(\varphi_t : S^*\mathcal{M} \to S^*\mathcal{M} \) is Anosov if there is a flow-invariant decomposition

\[
T(S^*\mathcal{M}) = E_0 \oplus E_+ \oplus E_- , \quad E_0 = \text{span}(X),
\]
General situation: The Anosov condition

\[\dim \mathcal{M} > 1 \implies \, X \text{ not elliptic. Require additional condition} \]

The geodesic flow \(\varphi_t : S^*\mathcal{M} \to S^*\mathcal{M} \) is Anosov if there is a flow-invariant decomposition

\[T(S^*\mathcal{M}) = E_0 \oplus E_+ \oplus E_- , \quad E_0 = \text{span}(X) , \]

s.t. \(E_\pm \) are continuous and there are \(\lambda, C > 0 \) with

\[\| D\varphi_\pm t v \| \leq C e^{-\lambda t} \| v \| \quad \forall \, v \in E_\pm , \, t \geq 0 . \]
General situation: The Anosov condition

\[\dim \mathcal{M} > 1 \quad \Rightarrow \quad \mathcal{X} \text{ not elliptic. Require additional condition} \]

The geodesic flow \(\varphi_t : S^* \mathcal{M} \to S^* \mathcal{M} \) is Anosov if there is a flow-invariant decomposition

\[T(S^* \mathcal{M}) = E_0 \oplus E_+ \oplus E_- , \quad E_0 = \text{span}(\mathcal{X}) , \]

s.t. \(E_\pm \) are continuous and there are \(\lambda, C > 0 \) with

\[\| D\varphi_{\pm t} v \| \leq C e^{-\lambda t} \| v \| \quad \forall \; v \in E_\pm , \; t \geq 0 . \]

\(E_+ : \text{exponentially stable bundle, } E_- : \text{exp. unstable bundle} \)
General situation: The Anosov condition

\[\dim \mathcal{M} > 1 \implies X \text{ not elliptic. Require additional condition} \]

The geodesic flow \(\varphi_t : S^* \mathcal{M} \to S^* \mathcal{M} \) is Anosov if there is a flow-invariant decomposition

\[T(S^* \mathcal{M}) = E_0 \oplus E_+ \oplus E_- , \quad E_0 = \text{span}(X) , \]

s.t. \(E_\pm \) are continuous and there are \(\lambda, C > 0 \) with

\[\|D\varphi_{\pm t} v\| \leq Ce^{-\lambda t} \|v\| \quad \forall \, v \in E_\pm, \, t \geq 0. \]

\(E_+ \) : exponentially stable bundle, \(E_- \) : exp. unstable bundle

\(E_\pm \) in general not smooth
General situation: The Anosov condition

\(\dim \mathcal{M} > 1 \implies X \) not elliptic. Require additional condition

The geodesic flow \(\varphi_t : S^* \mathcal{M} \to S^* \mathcal{M} \) is Anosov if there is a flow-invariant decomposition

\[
T(S^* \mathcal{M}) = E_0 \oplus E_+ \oplus E_-, \quad E_0 = \text{span}(X),
\]

s.t. \(E_\pm \) are continuous and there are \(\lambda, C > 0 \) with

\[
\|D_{\varphi_{\pm t}} v\| \leq C e^{-\lambda t} \|v\| \quad \forall \ v \in E_\pm, \ t \geq 0.
\]

\(E_+ \): exponentially stable bundle, \(E_- \): exp. unstable bundle

\(E_\pm \) in general not smooth

An Anosov flow is \textit{chaotic} with positive and negative Lyapunov exponents in \(E_+ \) and \(E_- \), respectively
The Anosov condition

Theorem (Anosov, Anosov-Sinai 1967)

If \mathcal{M} has strictly negative sectional curvatures, the geodesic flow φ_t on $S^*\mathcal{M}$ is Anosov.
The Anosov condition

Theorem (Anosov, Anosov-Sinai 1967)

If \mathcal{M} has strictly negative sectional curvatures, the geodesic flow φ_t on $S^\mathcal{M}$ is Anosov.*

Example: Compact hyperbolic manifolds

$$\mathcal{M} = \mathcal{H}^{n+1}/\Gamma$$
The Anosov condition

Theorem (Anosov, Anosov-Sinai 1967)

If \(\mathcal{M} \) has strictly negative sectional curvatures, the geodesic flow \(\varphi_t \) on \(S^*\mathcal{M} \) is Anosov.

Example: Compact hyperbolic manifolds

\[
\mathcal{M} = \mathcal{H}^{n+1} / \Gamma = \Gamma \backslash \text{SO}(n + 1, 1)_0 / \text{SO}(n + 1),
\]

\(\Gamma \subset \text{SO}(n + 1, 1)_0 \) discrete, torsion-free, cocompact
Classical resonances and resonant states

From now on, assume φ_t Anosov
Classical resonances and resonant states

From now on, assume φ_t Anosov

Theorem (Liverani 2004)

There are Hilbert spaces $\subset D'(S\ast M)$ in which X has discr. spectrum consisting of eigenvalues of finite multiplicities
Classical resonances and resonant states

From now on, assume φ_t Anosov

Theorem (Liverani 2004)

*There are Hilbert spaces $\subset D'(S^*M)$ in which X has discr. spectrum consisting of eigenvalues of finite multiplicities*
Classical resonances and resonant states

From now on, assume φ_t Anosov

Theorem (Liverani 2004)

There are Hilbert spaces $\subset \mathcal{D}'(S^*M)$ in which X has discr. spectrum consisting of eigenvalues of finite multiplicities

Eigenvalues: *classical (Pollicott-Ruelle) resonances*

Eigenvectors $\in \mathcal{D}'(S^*M)$: *resonant states*
Classical resonances and resonant states

From now on, assume φ_t Anosov

Theorem (Liverani 2004)

There are Hilbert spaces $\subset D'(S^*M)$ in which X has discr. spectrum consisting of eigenvalues of finite multiplicities

Eigenvalues: classical (Pollicott-Ruelle) resonances
Eigenvalues $\in D'(S^*M)$: resonant states

Spectral invariant of chaotic dynamical system (S^*M, φ_t)
Resonance distribution for pinched curvature

Theorem (Faure-Tsujii 2013)

For pinched sectional curvature

\[-\frac{1}{C} > \kappa > -C \sim -1:\]

Image source: T. Weich
Classical resonances on hyperbolic manifolds

Theorem (Dyatlov, Faure, Guillarmou 2013)

\[\kappa = -1, \text{ i.e., } M \text{ hyperbolic:} \]
Classical resonances on hyperbolic manifolds

Theorem (Dyatlov, Faure, Guillarmou 2013)

For $\kappa = -1$, i.e., \mathcal{M} hyperbolic:

Image source: T. Weich
Classical resonances on hyperbolic manifolds

Theorem (Dyatlov, Faure, Guillarmou 2013)

For $\kappa = -1$, i.e., \mathcal{M} hyperbolic:

Image source: T. Weich

Proof involves resonant states on vector bundles
Classical resonances on vector bundles

\[\nabla^V, \nabla^W \]

complex v.b. with connections \(\nabla^V, \nabla^W \)
Classical resonances on vector bundles

\[V \xrightarrow{\nabla_V} W \]

complex v.b. with connections \(\nabla_V, \nabla_W \)

\(S^* M \xrightarrow{\nabla^*} M \)

\[\Delta_W := \Delta_{\nabla_W, \nabla^L.C.} : \Gamma^\infty(W) \to \Gamma^\infty(W) \] Bochner Laplacian

\[X_V := \nabla^V_X : \Gamma^\infty(V) \to \Gamma^\infty(V) \] covariant derivative
Classical resonances on vector bundles

\[\mathcal{V} \overset{\mathcal{W}}{\longrightarrow} \text{complex v.b. with connections } \nabla^\mathcal{V}, \nabla^\mathcal{W} \]

\[S^*M \overset{M}{\longrightarrow} \]

\[\Delta_\mathcal{W} := \Delta_{\nabla^\mathcal{W}, \nabla^{\text{L.C.}}} : \Gamma^\infty(\mathcal{W}) \to \Gamma^\infty(\mathcal{W}) \quad \text{Bochner Laplacian} \]

\[X_\mathcal{V} := \nabla^\mathcal{V}_X : \Gamma^\infty(\mathcal{V}) \to \Gamma^\infty(\mathcal{V}) \quad \text{covariant derivative} \]

Lemma (Definition)

For \(\lambda \in \mathbb{C} \), the set of resonant states on \(\mathcal{V} \) is

\[\text{Res}(X_\mathcal{V}, \lambda) = \{ s \in D'(S^*M, \mathcal{V}) : X_\mathcal{V} s = \lambda s, \ WF(s) \subset E^*_+ \} . \]

If \(\text{Res}(X_\mathcal{V}, \lambda) \neq \{0\} \), \(\lambda \) is called classical resonance on \(\mathcal{V} \).
Examples of interesting vector bundles

\[\mathcal{M} = \mathcal{H}^{n+1} / \Gamma = \Gamma \backslash \text{SO}(n + 1, 1)_0 / \text{SO}(n + 1), \]
Examples of interesting vector bundles

\[\mathcal{M} = \mathcal{H}^{n+1}/\Gamma = \Gamma \backslash \text{SO}(n+1,1)/\text{SO}(n+1), \]

\[\mathcal{V} = \Lambda^k T^*(S^*\mathcal{M}) \quad \text{or} \quad \mathcal{V} = \otimes_{s,\text{tr}=0}^k T^*_{S^\perp}(S^*\mathcal{M}) \]

or \[\mathcal{V} = \Lambda^k E^*_\pm \quad (\text{here } E^*_\pm \text{ are smooth}) \]
Examples of interesting vector bundles

\[\mathcal{M} = \mathcal{H}^{n+1}/\Gamma = \Gamma \backslash SO(n+1,1)_0/\text{SO}(n+1), \]

\[\mathcal{V} = \Lambda^k T^*(S^*\mathcal{M}) \quad \text{or} \quad \mathcal{V} = \bigotimes_{s,\text{tr}=0}^k T_{S^\perp}^*(S^*\mathcal{M}) \]

or \[\mathcal{V} = \Lambda^k E_\pm^* \quad (\text{here } E_\pm^* \text{ are smooth}) \]

More generally, \[\mathcal{V} = \mathcal{V}_\tau \text{ ass. to unitary rep. } \tau \text{ of SO}(n) \]

using \[S^*\mathcal{M} = \Gamma \backslash \text{SO}(n+1,1)_0/\text{SO}(n) \]
Examples of interesting vector bundles

\[M = \mathcal{H}^{n+1}/\Gamma = \Gamma\backslash\text{SO}(n+1,1)_0/\text{SO}(n+1), \]

\[\mathcal{V} = \bigwedge^k T^*(S^*M) \quad \text{or} \quad \mathcal{V} = \bigotimes_{s,\text{tr}=0}^k T^*_{S^\perp}(S^*M) \]

or \[\mathcal{V} = \bigwedge^k E^*_\pm \quad \text{(here } E^*_\pm \text{ are smooth)} \]

More generally, \(\mathcal{V} = \mathcal{V}_\tau \) ass. to unitary rep. \(\tau \) of \(\text{SO}(n) \)
using \(S^*M = \Gamma\backslash\text{SO}(n+1,1)_0/\text{SO}(n) \)

More generally, for \(M = \Gamma\backslash G/K \) Riem. loc. symm. of rk. 1,
\(\mathcal{V} = \mathcal{V}_\tau \) for unitary rep. \(\tau \) of certain subgroup \(M \subset K \)
using \(S^*M = \Gamma\backslash G/M \)
For $\mathcal{M} = \Gamma \backslash G / K$ cpt. Riem. loc. symm. of rk. one, $\mathcal{V} = \mathcal{V}_\tau$:

Theorem (T. Weich, B.K., arXiv:1710.04625 (v2 2018))

The classical resonances on \mathcal{V} outside of the real axis lie in exact lines.

Image source: T. Weich
Band structure result

For $\mathcal{M} = \Gamma \backslash G / K$ cpt. Riem. loc. symm. of rk. one, $\mathcal{V} = \mathcal{V}_\tau$:

Theorem (T. Weich, B.K., arXiv:1710.04625 (v2 2018))

The classical resonances on \mathcal{V} outside of the real axis lie in exact lines.

Trivial 1-dim. τ gives scalar result for all compact Riemannian locally symmetric spaces of rank one

Image source: T. Weich
First band resonant states and pushforwards

Special role played by first band resonant states

\[\text{Res}^0(X_\mathcal{V}, \lambda) \subset \text{Res}(X_\mathcal{V}, \lambda) \]
First band resonant states and pushforwards

Special role played by first band resonant states

\[\text{Res}^0(X_V, \lambda) \subset \text{Res}(X_V, \lambda) \]

\[\text{Res}^0(X_V, \lambda) = \left\{ s \in \mathcal{D}'(S^*M, V) : X_V s = \lambda s, \quad \nabla_Y s = 0 \ \forall \ Y \in \Gamma(E_-) \right\} \]
First band resonant states and pushforwards

Special role played by first band resonant states

\[\text{Res}^0(X_V, \lambda) \subset \text{Res}(X_V, \lambda) \]

\[\text{Res}^0(X_V, \lambda) = \{ s \in \mathcal{D}'(S^*M, V) : X_V s = \lambda s, \nabla_Y s = 0 \ \forall \ Y \in \Gamma(E_-) \} \]

Want to find a bundle \(\mathcal{W} \) over \(M \) and a pushforward

\[\pi_* : \mathcal{D}'(S^*M, V) \to \mathcal{D}'(M, \mathcal{W}) \] to ask
First band resonant states and pushforwards

Special role played by first band resonant states

\[\text{Res}^0(X_V, \lambda) \subset \text{Res}(X_V, \lambda) \]

\[\text{Res}^0(X_V, \lambda) = \{ s \in \mathcal{D}'(S^*M, V) : X_V s = \lambda s, \quad \nabla_Y s = 0 \quad \forall \quad Y \in \Gamma(E) \} \]

Want to find a bundle \(\mathcal{W} \) over \(M \) and a pushforward

\[\pi_* : \mathcal{D}'(S^*M, V) \to \mathcal{D}'(M, \mathcal{W}) \] to ask

Q For \(s \in \text{Res}^0(X_V, \lambda) \): Is \(\pi_* s \) an eigensection of \(\Delta_{\mathcal{W}} \) for some eigenvalue \(\mu(\lambda) \in \mathbb{R} \)?
First band resonant states and pushforwards

Special role played by first band resonant states

\[\text{Res}^0(X_V, \lambda) \subset \text{Res}(X_V, \lambda) \]

\[\text{Res}^0(X_V, \lambda) = \left\{ s \in D'(S^*M, V) : X_V s = \lambda s, \quad \nabla_Y s = 0 \ \forall \ Y \in \Gamma(E_+) \right\} \]

Want to find a bundle \(\mathcal{W} \) over \(M \) and a pushforward

\[\pi_* : D'(S^*M, V) \to D'(M, \mathcal{W}) \] to ask

Q For \(s \in \text{Res}^0(X_V, \lambda) \): Is \(\pi_* s \) an eigensection of \(\Delta_{\mathcal{W}} \)

for some eigenvalue \(\mu(\lambda) \in \mathbb{R} \) ?

Q Is there an Isom. \(\pi_* : \text{Res}^0(X_V, \lambda) \cong \text{Eig}(\Delta_{\mathcal{W}}, \mu(\lambda)) \) ?
Examples of compatible bundles

When \mathcal{V} is a subbundle of $\bigotimes^k T^*(S^*\mathcal{M})$, for example

$$\mathcal{V}_1 = \Lambda^k T^*(S^*\mathcal{M}), \quad \mathcal{V}_2 = \Lambda^k E^*, \quad \mathcal{V}_3 = \bigotimes^k_{s, \text{tr}=0} T^*_{S^\perp} (S^*\mathcal{M})$$
Examples of compatible bundles

When \(\mathcal{V} \) is a subbundle of \(\bigotimes^k T^*(S^*M) \), for example

\[
\mathcal{V}_1 = \Lambda^k T^*(S^*M), \quad \mathcal{V}_2 = \Lambda^k E_\pm, \quad \mathcal{V}_3 = \bigotimes^k_{s, \text{tr}=0} T^*_S(S^*M)
\]

put \(\mathcal{W} := (\bigotimes^k D\pi^t)^{-1}(\mathcal{V}) \subset \bigotimes^k T^*M \quad (\pi : S^*M \to M) \)
Examples of compatible bundles

When \mathcal{V} is a subbundle of $\bigotimes^k T^*(S^*M)$, for example

$$\mathcal{V}_1 = \Lambda^k T^*(S^*M), \quad \mathcal{V}_2 = \Lambda^k E_\pm, \quad \mathcal{V}_3 = \bigotimes^k_{s, \text{tr}=0} T^*_S(S^*M)$$

put $\mathcal{W} := (\bigotimes^k D\pi^t)^{-1}(\mathcal{V}) \subset \bigotimes^k T^*M \quad (\pi : S^*M \to M)$

E.g. $\mathcal{W}_1 = \mathcal{W}_2 = \Lambda^k T^*M, \quad \mathcal{W}_3 = \bigotimes^k_{s, \text{tr}=0} T^*M$
Examples of compatible bundles

When \mathcal{V} is a subbundle of $\otimes^{k} T^{*}(S^{*} \mathcal{M})$, for example

$$
\mathcal{V}_1 = \Lambda^{k} T^{*}(S^{*} \mathcal{M}), \quad \mathcal{V}_2 = \Lambda^{k} E_{\pm}, \quad \mathcal{V}_3 = \otimes_{s, \text{tr}=0}^{k} T_{S_{\perp}}^{*}(S^{*} \mathcal{M})
$$

put $\mathcal{W} := (\otimes^{k} D\pi^{t})^{-1}(\mathcal{V}) \subset \otimes^{k} T^{*} \mathcal{M}$ \quad ($\pi : S^{*} \mathcal{M} \to \mathcal{M}$)

E.g. $\mathcal{W}_1 = \mathcal{W}_2 = \Lambda^{k} T^{*} \mathcal{M}, \quad \mathcal{W}_3 = \otimes_{s, \text{tr}=0}^{k} T^{*} \mathcal{M}$

Then there is a natural pushforward

$$
\pi_{\ast} : \mathcal{D}'(S^{*} \mathcal{M}, \mathcal{V}) \to \mathcal{D}'(\mathcal{M}, \mathcal{W})
$$
Tensor bundles on hyperbolic manifolds

For $\mathcal{M} = \mathcal{H}^{n+1}/\Gamma = \Gamma \backslash \text{SO}(n+1,1)_0/\text{SO}(n+1)$:

Theorem (Dyatlov, Faure, Guillarmou 2013)

For all $\lambda \in \mathbb{C}$ outside a discrete set $\mathcal{A} \subset \mathbb{R}$, there is an iso.

$$\pi_\ast : \text{Res}^0(X_{s,\text{tr}=0} \otimes^k T^*_{S\perp}(S^*\mathcal{M}), \lambda) \xrightarrow{\cong} \text{Eig}((\Delta_{s,\text{tr}=0} \otimes^k \mathcal{M}, \mu(\lambda)) \cap \ker \text{div}$$
Tensor bundles on hyperbolic manifolds
For $\mathcal{M} = \mathcal{H}^{n+1}/\Gamma = \Gamma \backslash \text{SO}(n + 1, 1)_0/\text{SO}(n + 1)$:

Theorem (Dyatlov, Faure, Guillarmou 2013)

For all $\lambda \in \mathbb{C}$ outside a discrete set $\mathcal{A} \subset \mathbb{R}$, there is an iso.

$$
\pi_* : \text{Res}^0(X_{\otimes^k s, \text{tr}=0} T^*_{S \perp} (S^* \mathcal{M}), \lambda) \xrightarrow{\cong} \text{Eig}(\Delta_{\otimes^k s, \text{tr}=0} T^* \mathcal{M}, \mu(\lambda)) \cap \ker \text{div}
$$

$\mu(\lambda)$ is an explicitly given quadratic polynomial in λ
Tensor bundles on hyperbolic manifolds
For $\mathcal{M} = \mathcal{H}^{n+1}/\Gamma = \Gamma \backslash \text{SO}(n+1,1)_0/\text{SO}(n+1)$:

Theorem (Dyatlov, Faure, Guillarmou 2013)

For all $\lambda \in \mathbb{C}$ outside a discrete set $\mathcal{A} \subset \mathbb{R}$, there is an iso.

$$
\pi_* : \text{Res}^0(\chi_{s,\text{tr}=0}^k T^*_S (S^* \mathcal{M}), \lambda) \\
\cong \text{Eig}(\Delta_{s,\text{tr}=0}^k T^* \mathcal{M}, \mu(\lambda)) \cap \ker \text{div}
$$

$\mu(\lambda)$ is an explicitly given quadratic polynomial in λ

Moreover,

$$
\text{Res}^0(\chi_{s,\text{tr}=0}^k T^*_S (S^* \mathcal{M}), \lambda) \cong \text{Res}^m(\chi, \lambda - m)
$$

m-th band
Result for general associated bundles

For $\mathcal{M} = \Gamma \backslash G/K$ cpt. Riem. loc. symm. of rk. one, $\mathcal{V} = \mathcal{V}_\tau$, $\mathcal{W} = \mathcal{W}_\sigma$ for appropriate irreducible rep. τ and σ:
Result for general associated bundles

For $\mathcal{M} = \Gamma \backslash G / K$ cpt. Riem. loc. symm. of rk. one, $\mathcal{V} = \mathcal{V}_\tau$, $\mathcal{W} = \mathcal{W}_\sigma$ for appropriate irreducible rep. τ and σ:

Theorem (T. Weich, B.K., preprint 2018)

For all $\lambda \in \mathbb{C}$ outside a discrete set $\mathcal{A} \subset \mathbb{R}$, there is an iso.

$$\pi_* : \text{Res}^0(\mathcal{X}_\mathcal{V}, \lambda) \xrightarrow{\cong} \text{Eig}(\Delta_{\mathcal{W}}, \mu(\lambda)) \cap \ker D_1 \cap \cdots \cap \ker D_N$$

*for some differential operators D_1, \ldots, D_N.***
Result for general associated bundles

For $\mathcal{M} = \Gamma \backslash G / K$ cpt. Riem. loc. symm. of rk. one, $\mathcal{V} = \mathcal{V}_\tau$, $\mathcal{W} = \mathcal{W}_\sigma$ for appropriate irreducible rep. τ and σ:

Theorem (T. Weich, B.K., preprint 2018)

For all $\lambda \in \mathbb{C}$ outside a discrete set $\mathcal{A} \subset \mathbb{R}$, there is an iso.

$\pi_* : \text{Res}^0(X_\mathcal{V}, \lambda) \xrightarrow{\cong} \text{Eig}(\Delta_\mathcal{W}, \mu(\lambda)) \cap \ker D_1 \cap \cdots \cap \ker D_N$

for some differential operators D_1, \ldots, D_N.

$\mu(\lambda)$ is an explicitly given quadratic polynomial in λ
Classical resonances and topology

For $\mathcal{M} = \mathcal{H}^{n+1}/\Gamma = \Gamma\backslash \text{SO}(n + 1, 1)_0/\text{SO}(n + 1)$:
Classical resonances and topology

For \(\mathcal{M} = \mathcal{H}^{n+1}/\Gamma = \Gamma \backslash \text{SO}(n+1,1)_0/\text{SO}(n+1) \):

Theorem (T. Weich, B.K., preprint 2018)

One has

\[
\dim_{\mathbb{C}} \text{Res}^0(\Lambda^p \mathcal{E}^+, 0) = \begin{cases}
2 b_p(\mathcal{M}), & p \neq \frac{n}{2}, \\
 b_p(\mathcal{M}), & p = \frac{n}{2},
\end{cases}
\]

where \(b_p(\mathcal{M}) = \dim_\mathbb{C} H^p(\mathcal{M}, \mathbb{C}) \) is the \(p \)-th Betti number.

Similar result proved by Dyatlov and Zworski in dimension 2 and *variable negative curvature*
Usual Sobolev spaces: \(s \in \mathbb{R} \),

\[
m_s : T^* M \to \mathbb{R}, \quad \xi \mapsto (1 + \|\xi\|^2)^{-s/2}
\]
growth-/symbol function.
Usual Sobolev spaces: $s \in \mathbb{R}$,

$$m_s : T^* M \to \mathbb{R}, \quad \xi \mapsto (1 + \|\xi\|^2)^{-s/2}$$

growth-/symbol function. Choose quantization map

$$\text{Op} : \{\text{symbol functions } T^* M \to \mathbb{R}\} \quad \longrightarrow \quad \{\text{operators } D(M) \to D'(M)\}$$
Usual Sobolev spaces: \(s \in \mathbb{R} \),

\[m_s : T^* \mathcal{M} \to \mathbb{R}, \quad \xi \mapsto (1 + \|\xi\|^2)^{-s/2} \]
growth-/symbol function. Choose quantization map

\[\text{Op} : \{ \text{symbol functions } T^* \mathcal{M} \to \mathbb{R} \} \]
\[\to \{ \text{operators } \mathcal{D}(\mathcal{M}) \to \mathcal{D}'(\mathcal{M}) \} \]

For \(s > 0 \): Obtain \(\text{Op}(m_s) : L^2(\mathcal{M}) \to L^2(\mathcal{M}) \),

\[H^s(\mathcal{M}) := \text{Op}(m_s)(L^2(\mathcal{M})) \]
Usual Sobolev spaces: $s \in \mathbb{R}$,

$$m_s : T^*\mathcal{M} \to \mathbb{R}, \quad \xi \mapsto (1 + \|\xi\|^2)^{-s/2}$$

growth-/symbol function. Choose quantization map

$$\text{Op} : \{\text{symbol functions } T^*\mathcal{M} \to \mathbb{R}\} \rightarrow \{\text{operators } \mathcal{D}(\mathcal{M}) \to \mathcal{D}'(\mathcal{M})\}$$

For $s > 0$: Obtain $\text{Op}(m_s) : L^2(\mathcal{M}) \to L^2(\mathcal{M})$,

$$H^s(\mathcal{M}) := \text{Op}(m_s)(L^2(\mathcal{M}))$$

Then

$$\Delta_\mathcal{M} - \lambda : H^2(\mathcal{M}) \to L^2(\mathcal{M})$$

is a Fredholm operator for $\lambda \in \mathbb{C}$
Usual Sobolev spaces: $s \in \mathbb{R}$,

$$m_s : T^* M \to \mathbb{R}, \quad \xi \mapsto (1 + \|\xi\|^2)^{-s/2}$$

growth-/symbol function. Choose quantization map

$$\text{Op} : \{\text{symbol functions } T^* M \to \mathbb{R}\} \longrightarrow \{\text{operators } \mathcal{D}(M) \to \mathcal{D}'(M)\}$$

For $s > 0$: Obtain $\text{Op}(m_s) : L^2(M) \to L^2(M)$,

$$H^s(M) := \text{Op}(m_s)(L^2(M))$$

Then

$$\Delta_M - \lambda : H^2(M) \to L^2(M)$$

is a Fredholm operator for $\lambda \in \mathbb{C}$

Analytic Fredholm theory \implies spectrum(Δ) discrete in \mathbb{C}
Anisotropic Sobolev spaces

Faure-Sjöstrand 2011: \(\exists \ m \in \mathcal{C}^\infty(T^*(S^*\mathcal{M}), [-1, 1]): \)

\[X \ m \leq 0, \quad m \equiv \pm 1 \text{ near } E^*_\pm \subset T^*(S^*\mathcal{M}) \]
Anisotropic Sobolev spaces

Faure-Sjöstrand 2011: \(\exists \ m \in C^\infty(T^*(S^*\mathcal{M}), [-1,1]) : \)

\[X m \leq 0, \quad m \equiv \pm 1 \text{ near } E^*_\pm \subset T^*(S^*\mathcal{M}) \]

Define

\[\tilde{m}_s(\xi) := (1 + \|\xi\|^2)^{-sm(\xi)/2}, \quad \xi \in T^*(S^*\mathcal{M}), \ s \in \mathbb{R} \]
Anisotropic Sobolev spaces

Faure-Sjöstrand 2011: \(\exists m \in C^\infty(T^*(S^*M), [-1, 1]) : \)

\[
X m \leq 0, \quad m \equiv \pm 1 \text{ near } E_\pm^* \subset T^*(S^*M)
\]

Define

\[
\tilde{m}_s(\xi) := (1 + \|\xi\|^2)^{-sm(\xi)/2}, \quad \xi \in T^*(S^*M), s \in \mathbb{R}
\]

For \(s > 0 \), obtain \(\text{Op}(\tilde{m}_s) : L^2(S^*M) \to L^2(S^*M) \),

\[
H^s_{\text{an}} := \text{Op}(\tilde{m}_s)(L^2(S^*M))
\]
Resonances as poles of the resolvent

Theorem (Liverani 2005 / Faure-Sjöstrand 2011)

For $C_0 > 0$ we find $s > 0$ such that $X - \lambda : D^{s}_{an} \rightarrow H^{s}_{an}$ is for $\Re \lambda > -C_0$ a Fredholm operator.
Resonances as poles of the resolvent

Theorem (Liverani 2005 / Faure-Sjöstrand 2011)

For $C_0 > 0$ we find $s > 0$ such that $X - \lambda : D^s_{\text{an}} \to H^s_{\text{an}}$ is for $\Re \lambda > -C_0$ a Fredholm operator and $\exists C_1 > 0$ such that

$$(X - \lambda)^{-1} : H^s_{\text{an}} \to H^s_{\text{an}}$$

exists for $\Re \lambda > C_1$.
Resonances as poles of the resolvent

Theorem (Liverani 2005 / Faure-Sjöstrand 2011)

For $C_0 > 0$ we find $s > 0$ such that $X - \lambda : D^s_{\text{an}} \rightarrow H^s_{\text{an}}$ is for $\Re \lambda > -C_0$ a Fredholm operator and $\exists C_1 > 0$ such that

$$(X - \lambda)^{-1} : H^s_{\text{an}} \rightarrow H^s_{\text{an}}$$

exists for $\Re \lambda > C_1$. The holomorphic resolvent map

$$\mathbb{C} \supset \{\Re \lambda > C_1\} \ni \lambda \rightarrow (X - \lambda)^{-1} : H^s_{\text{an}} \rightarrow H^s_{\text{an}}$$

has a meromorphic continuation to $\{-C_0 < \Re \lambda\} \subset \mathbb{C}$ with poles of finite ranks.
Resonances as poles of the resolvent

Theorem (Liverani 2005 / Faure-Sjöstrand 2011)

For $C_0 > 0$ *we find* $s > 0$ *such that* $X - \lambda : D^s_{an} \to H^s_{an}$ *is for* $\Re \lambda > -C_0$ *a Fredholm operator and* $\exists C_1 > 0$ *such that*

$$(X - \lambda)^{-1} : H^s_{an} \to H^s_{an}$$

exists for $\Re \lambda > C_1$. *The holomorphic resolvent map*

$$\mathbb{C} \supset \{\Re \lambda > C_1\} \ni \lambda \to (X - \lambda)^{-1} : H^s_{an} \to H^s_{an}$$

has a meromorphic continuation to $\{-C_0 < \Re \lambda\} \subset \mathbb{C}$ *with poles of finite ranks. Poles (with rank) and residues are independent of the choices of* s *and* C_0.
Resonances as poles of the resolvent

Theorem (Liverani 2005 / Faure-Sjöstrand 2011)

For $C_0 > 0$ we find $s > 0$ such that $X - \lambda : D^s_{an} \to H^s_{an}$ is for
$\text{Re} \lambda > -C_0$ a Fredholm operator and $\exists C_1 > 0$ such that

$$(X - \lambda)^{-1} : H^s_{an} \to H^s_{an}$$

exists for $\text{Re} \lambda > C_1$. The holomorphic resolvent map

$$\mathbb{C} \ni \{ \text{Re} \lambda > C_1 \} \ni \lambda \to (X - \lambda)^{-1} : H^s_{an} \to H^s_{an}$$

has a meromorphic continuation to $\{-C_0 < \text{Re} \lambda\} \subset \mathbb{C}$ with
poles of finite ranks. Poles (with rank) and residues are
independent of the choices of s and C_0.

Poles are classical resonances, residues are eigenspaces with
resonant states $\in H^s_{an} \subset \mathcal{D}'(S^*\mathcal{M})$.